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1. INTRODUCTION

In this paper, we are concerned with constrained Chebyshev approxima-
tion problems of the type

(D,(r,c):=) min max | p(z)l. (1)

pell,pley—1 zed,

Here 71, denotes the set of all complex polynomials of degree at most #,

(?’,::{:e(lj

1
[:~]f+]:+1|$r+—}, r=l, (2)
r,

is any ellipse (including its interior) in the complex plane with foci at + 1,
and it is always assumed that ¢e €' &.. Since all polynomials p e [T, with
p(c¢) =1 can be parametrized in the form

pPI=1- e+ + - +7,(2-0)") 7172 7€ C,
(3)
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298 FISCHER AND FREUND

the condition ¢ e C' &, guarantees that Haar’s condition is satisfied. Thus,
there always exists a unique optimal polynomial for (1) which will be
denoted by p,{(z:r. ¢) in the sequel. However, these extremal polynomials
are explicitly known only for special cases. The solution of (1) is classical
for the case r=1 of the line segment & =[—1, 1] real ¢

TH(:)
T.(¢c)

pzir cl= ceRV[—1,1], (4)
where T, is the nth Chebyshev polynomial (of the first kind).

Constrained approximation problems (1) with complex ¢ arise in the
context of optimizing semi-iterative methods for the solution of non-
Hermitian systems of linear equations (c.g., Manteuffel {4 ] and Eiermann,
Niethammer, and Varga [1]). Mainly motivated by this application, in
some recent papers, problem (1) was studied for complex ¢ and the optimal
polynomials were found for certain special cases. For n=1. Opfer and
Schober [6] obtained a complete solution of a more general version of (1)
with & < C any compact set not containing ¢. For ellipses, their result can
be rewritten in the form

Bz +isiny

(zir0)= —, 5
pilzr ) A(Bcosy+iA4siny) (5

where
c=Acosy+iBsiny (€dég) (6)

with 0 <y < 2n and

1 1 1 1
A=—-| R+ — B=- R—— R =1,
2( +R>’ 2( R>’ Zr=h

(by dér we denote the boundary of &;). Freund and Ruscheweyh [3]
investigated (1) for the case r =1 of the line segment & =[ —1, 1]. They
determined p,(z; 1, ¢) for arbitrary ¢ and p,(z; 1, ¢) for ne N and purely
imaginary ¢. In both cases, the optimal polynomials are suitable linear
combinations of 7, T,,_;, and T, ,. Finally, Fischer [2] showed that for
nondegenerate ellipses &,, r> 1, and purely imaginary ¢ the normalized
Chebyshev polynomial (4) is optimal for (1), if n is even and |c| is
sufficiently large compared to r.

Note that, except for the cases solved in [3], all the other explicitly
known optimal polynomials are of the form

giz)=———". xeC. (7}
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It is thus natural to ask, whether polynomials of type (7) lead to explicit
solutions of (1) also for the case of general complex ¢ and neN. The
purpose of this note is to answer this question.

The paper is organized as follows. In Section 2, we introduce a new
family of polynomials ¢,(z; ¢), neN, ¢ce C\é,, as the polynomials of the
form (7) with minimal uniform norm on &,. Some simple properties of ¢,
are also listed. In Section 3, we derive a necessary and sufficient condition
for ¢, to be the extremal polynomial of the approximation problem (1).
Finally, Section 4 contains the main result of this paper. We show that
indeed p,(z;r,¢c)=q,(c;¢) for all fixed neN, r>1, and all ce C whose
parameter R in the representation (6) is sufficiently large, i.e.. R= R,(n, r).
An explicit formula for R(n, r) is given.

2. A CrAsS OF EXTREMAL POLYNOMIALS

Throughout this paper, let ne N, r =1, & be the ellipse defined in (2),
and it is assumed that ce C\ &, with representation (6). We will make use
of the parametrization

z{¢)=acos ¢+ ib sin ¢, heR,

of the boundary @4, of &. Here a :=a,, h:=b,, where

1/, 1 1/, 1
a, ::§<rk+r_"> and b, ::;(r"—;), k=12, ... (8)

Z

T.(z) denotes the kth Chebyshev polynomial which by means of the
Joukowsky map is given by

By (6) and (9), one has
¢ ' =Ti(c)= A, cos(ky)+iB, sin(ky), k=1,2, .., (10)

where
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will be used repeatedly in the sequel. Moreover, note that, since R > r,
A, >ay, B, >h,. k=12 ..

We consider the extremal problem

. T (z2)+a
(M, (r.c):=) r}ngm medx ﬁ—;; ) (12)
Since w=T,(z) maps &, onto &,., (12} is equivalent to
min max | p(w)].
P plent 1 we b
Thus, by (5) and (10) (for k =n),
(=)= p Tz ) ) = B, T,(z)+isin(ny) (13)

A,(B, cos{ny)+iA4, sin(ny))

is the unique extremal polynomial of (12). Next, we determine M ,(r, ¢) and
the corresponding extremal points, i.e., z €& with

‘qn(:; ()| - AM”(V, (').

From the maximum modulus principle it follows that all such points lie on
¢é,. By (9) and (8) (both for £ =n), one has

T/x(:r(¢)) =4a, COS(”¢) + ihn Sin(ﬂ¢ )
Using this identity, we deduce from (13) the relation

. a (B, sin(ng)— b, sin(ny))*
o N [ 5 .o i
‘qn( :(¢)~(H AZ( ai(B;%—sm“(n“/)) >

n

peR.  (14)

Therefore, M, (r, c)=a,/A,. and the extremal points are just the z (¢) with
¢ satisfying

B, sin(ng)=b, sin(ny). (15)
We set
b
d, :ZBA:Sin(n“,') (16}
and define ¥, by
i T
si =d,, —= - 1
gln wl] ‘IZ 2<lp”<2 ( 7)
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Note that

b
d,| <=2 <1,

All solutions (mod 2n) of (15) are then given by

1y o

/
pr=—m+(—
n n

301

(18)

Remark that for r>1 (resp. r=1) this leads to precisely 2n (resp. n+ 1)
distinct extremal points of ¢, on @&,. We summarize these results in the

following

THEOREM 1. q,(z; ¢) is the unigue extremal polynomial of (12), and the

corresponding minimal norm is

,,II + 1/’/’,)1
MU, ¢)=—7T—.
'1(’ ¢ ) Rn + l’,'/R”

On &.. r>1, g,(z; ¢} has preciselv 2n extremal points:

1 1 i [
=3 r+; cos¢,+§ r—- sin ¢,,

/
¢/:;n+(_1)’ﬂ, I=1,2,.. 2n

n
The extremal points of q,(z;c) on & =[—1,1] are

In
z,=C0Ss —, [=0,1,.., n
n

Remark 1. The optimal polynomial of (12) is identical for all &,
1 <r< R M,r c)depends only on the parameter R of &, but not on the

position of ¢ on 0&.

The family of polynomials ¢,(z; ¢) also leads to upper and lower bounds

for the minimal deviation D, (r, ¢) of (1).

THEOREM 2. Let r>=1, cedbg, R>r. Then,

a, r+ 1/
Drcys=t=—»>"_
A, R'+1/R"

Il
o
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and
[ (B, +b, [sin(ny)])’
D”(n ()>ﬁi\/17( ;1+7/z|5.1n5nl){) (20)
A, a, (B, +sin-(ny))
for all n satisfving
sin(ny)| <b,B,. (21)

Remark 2. Clearly, (21) 1s true if # is sufficiently large.

Proof. Relation (19) is an immediate consequence of Theorem 1.
A standard technique (Trefethen [8], Manteuffel [4]) to obtain lower
bounds for complex approximation problems is based on Rouché’s
theorem. Applied to (1) and g¢,,. this yields

D,(r, ¢}z min |g,(z; ¢)l, (22)
e b,

if it is guaranteed that all zeros of ¢, are contained in &,. In view of (14),
the right-hand side of (22) is just the bound stated in (20). By (13), the
zeros of ¢, are the solutions of the equation

_sin{ny)

T.(z)=—i B

n

Using (9) (for k =n), one easily verifies that all these solutions lie on the
boundary 36, of an ellipse of type (2) whose parameter p > 1 is defined by

1 1 |sin(#y)]
B, == p'—— | =—F"—.
B. 2<p p”> B

n

Therefore, 06, (and hence the zeros of ¢,) is contained in &, iff B, <b,. This
concludes the proof of Theorem 1. ||

3. A CRITERION FOR OPTIMALITY

As mentioned in the Introduction, it is known that
pﬂ(:; r’ ()):q’l(:; (‘)7 :€C7 (23)

for some special cases as n=1or r=1, ce R\[ —1, 1]. In this section, we
present a necessary and sufficient condition for (23) for the general case
neN, ce C\&,. This criterion allows us to check (23) by computing 2» real
numbers for which explicit formulas are derived.
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First, consider the case r=1 of the degenerate ellipse & =[—1,1]. It
was shown in [3] that p (z; 1, ¢) has precisely n+ | extremal points

l=zy>zy> - >z,=—1

and there is a 5, € C such that

;—C

pn(zl; l’(‘): (‘1)

, [=0,1,..,n (24)

|~/ c|

By Theorem | and (13) (with z=z,), ¢,(z; ¢) has the extremal points

In , sin(ny)
:l:COS; and qn(:l;()):[n<(*1)[+ B" )l
[=0,1,..,n (25)

for some r,e C. By comparing (24) and (25), it is straightforward to verify
that, for r=1, (23) holds iff n=1 or ce R\ &,. So, except for the already
known cases, ¢,(z; ¢) is not optimal for (1) with r =1,

Therefore, for the rest of this paper, we assume that » > 1. By Theorem 1,
the extremal points of ¢,{(z; ¢) on &, are

[ 4
z,i=acos ¢,+ ibsin ¢, ¢/::7zn+(_1)/l/:_1’
I=1,2,.. 2n, (26)

with , defined by (17) and (16). We list some properties of the points
(26), which will be needed for the derivation of the main result of this
section, in the following

LEmMma 1. (a) Forl=1,2, .., 2n,

sin(ng,)=d,, cos(ng,)=(—1) \/1 d?, (27)
and
g.(zi0) =1, (( 1 )’+i——“"d’—'r__2>, (28)
b, 1—d;
where
a,B,/1—d:

1, = - .
" A,(B, cos(ny) +id, sin(ny))
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(b) Forj=0,1,.. 2n,

1 it j=0
2n » ; / T4 ;—
Z 0= Iy x i, i l/. / H (294)
e 1—2d2if j=2n
0 otherwise
and
2u 1 If / =n
Y- We™=2n 1 —d2x{2id, i j=2n (29b)
{11 .
0 otherwise.

Proof. The relations in (27) follow immediately from (17) and the
definition of ¢, in (26). Equation (28) is obtained from (13) (with z =z,) by
using (9) (for k =n), (16), and (27).

We now turn to the proof of part (b). Recall that

if jenz

: STV AYS — n 1
I

s i jénZ.

Let 0<j<2r and o = £ 1. Since, by (26),

2kn Wy, X
2 b it =2k
n n
¢/: \
2k—1)m " ,
(S L VO S
n n
and with (30), we get
il Sleltt = plitvmm) i plAmirmh 4 Je i plmiZh 1)
[—1 k=1 ko= 1

n

— (()I/W‘z,, ) + (5() m‘;,n() @ n)) Z (,(Zm/ nik

ko1
1+90 if j=0
e —Ge W if j=n
=nx C e L
eVt e 2 if j=2n
0 otherwise.

Using (17), one easily verifies that these are just the formulas (29a) (0 =1)
and (29b) (0= —1). |
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In view of (3), (1) is a linear Chebyshev approximation problem: We
seek the best uniform approximation to f(z)=1 on &, out of all functions
of the linear space

()= pell,|plc)=0}.

Therefore, the characterization of best approximations due to Rivlin and
Shapiro [7] can be applied. The following criterion results:

Criterion 1. q,(z:¢) is the optimal polvaomial for (1) iff there exist
nonnegative real numbers ¢, 64, ..., a5, (not all zero) such that

2n

S o,q,(z)pz)=0 forall pell (c). (31)

/=1

We now determine all real o, ..., 9., which fulfill (31). Note that ¢,(z,: ¢)
is given explicitly in (28). Furthermore, I7,(¢) is spanned by the polyno-
mials

T.(z)—cy, k=12, ..n
and, by (26), (9),

1

1
T.(z)) zi(rke’k“”f;; e ”"“").

Thus, (31) can be rewritten in the form

2n

Y o,((=1) —ie, ) r*e®® 4+ r e *9—2c,)=0, k=1,2,..n  (31)

/=1

where

andn (32)
e, =————=——.
b” \/ 1 *dz )

Next, we remark that any numbers ¢, ..., 0., € R admit a representation of
the type

"

0,= Z (),, cos( jo,) + H, sin( jé,))

=0

=Y (v,e"+ve ", 1=1,2,.. 2n, (33)

j=0
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with real number 4, p,, j=0, .., n p,:=0, and

" (34)

! B
This follows from the fact that the linear space spanned by

I, cos @, cos(2¢), ... cos(ng), sin ¢, sin(2¢), ..., sin(ng)

satisfies Haar’s condition on any interval of the form [o, 2 +27), € R, and
since, by (26) and (17), the numbers ¢,, /=1, .., 2n, are distinct and all
contained in such an interval. By (33), (317} leads to a system of equations
for vy, vy, .y v,

2n

Z N (=) —ie,) (v, 4 v e )

=0 /=1

x(rfe®4r e M =20,)=0.  k=1,2...n (317)

A routine calculation, making use of (29a), (29b), (32). and (34), shows
that (31”) reduces to

d 1 Ve o
V., F <b,, + ”) +V, . o (b, —r"d.)—ia,d, (~:+ \rArA>
¥

A b (1 =d7)—ia,d (g +d,u0,)), k=12 .,n—1, (35a)

and, for k=n, to

an(hn + [(Indn)(/:() + dn.un) - (l - di)(bn cn + l'drz)/irz = O (35b)

Note that 4, and y, only occur in the combination
T ::arl(;“()+d/lllll): (36)
moreover, we set

A=(1—d})i, (37)

By taking its real and imaginary part, respectively, each of the complex
equations (35) yields two real equations. Using (34), (8), (36), and (37), we
thus arrive at

(akbn_bn —Ad;;:)/{n k +anhkdn.uk - 2(Re (.I\')/)n;L + z(lm (‘I\‘)dnt‘ 3
{35'a)
aca,d, i+ (bpb,+a, du, =2Rec,)d,t—2(Imcy)b, 4,
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for k=1,..,n—1, and

(hn - (Im Cn)dn)r - (Re (',,)b,,/]. =0a

(35'b)
(Rec,)d,t—(b,(Imc,)+d,)%=0.

With (16) and (10) (for k = n), the two equations of (35'b) can be written
as

cos(ny)(t cos(ny) —AA4,) =0, sin(ny }{(t cos(ny)—2A,)=0.

Therefore, the 2x2 system (35'b) is of rank 1 and its solutions are
described by

CoSs{m,
= (ny) .
A

n

TeR. (38)

Now assume that 7€ R is arbitrary, but fixed, and let 4 be defined by (38).
It remains to solve the system (35'a) of 2(» — 1) linear equations for the
2(n—1) unknowns A, and u,, k=1, .., n— 1. First, we note that, by com-
bining the first equation of (35'a) with the second one of (35'a) (with &
replaced by n— k), the system (35'a) is equivalent to the n— 1 decoupled
2 x 2 systems

C, (‘ k>:2b,,r<’fk>, k=1,.,n—1, (39)
K Bk
where
C _ akbn—bn l\d;zx anbk dn )
kT an—rkandn bn kbn+akdr21
and
cos(ny) sin(ny)
fr=1(Recy) +(Im ¢;) B =,
’ o) (40)
sin(#y cos(m
g/s’:(Re("n—k) Bfn’)*(lm(.nfk) An/‘ -

Here, the formulas (40) werc obtained by using (38) and (16). With (8), it
is easily verified that

det C, = a,b, (b} +d7)(1 —d}). (41)

64062 33
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Thus, in view of (18), all matrices C,, k =1, .., n — 1, are nonsingular, and
by Cramer’s rule we deduce from (39) and (41) that

Ap=TA (1), fe=Ti,(1), (42)
where
- 2b hn dl> . andnbn—/\ >
()= —— T M T Tk
/A( ) (b;‘*—d;)(l_(i:’)(((l” & bk/ f * bkan I & * )
and

(1)_ 2/))1 ( bn di) andnan I3 /> (43b)
Ha _(b?,-*—dlzz)(l_dg)( bn k ay B akbrl k "

k=1, .., n— 1 Finally, note that, by (27), (36), (37), and (38), summing up
of the first (j=0) and the last (j=n) term in (33) yields

1 -1y y
Ao+ A, cos(ng,) + p, sinng,) =1 (— + = %) =1, .., 2n
au 4 n \/l - d;::

(44)

Summarizing, we have proved that the set of all solutions o=
(6,,03,..,65,) €R* of (31) is given by the one-dimensional linear space

T
oc=—o0%*, 1e R,
a

n

where, by (33), (42), and (44),
cos(ny) a,
J1=d>4,
n o1
+a, Y. (A(1)cosike,) + p (1) sin(kg,)). I=1,2,..,2n (45)

k=1
Hence, Criterion | can be restated as follows.

c¥ =1+ (-1 —=

THEOREM 3. Let neN, r>1, ¢ceC\é&. Then, the polynomial (13),
q.(z; ), is optimal for (1) iff the numbers (45), o}, [=1, 2, ..., 2n, are either
all nonnegative or all nonpositive.

Remark 3. For given n, r, ce 06, R>r, the numbers o}, I=1, ..., 2n,
can easily be computed numerically by means of the formulas (6), (8), (11),
(16), (26), and (43). We have done that in a number of cases. These
numerical tests indicated that the polynomials ¢,(z: ¢) are indeed optimal
for (1) whenever R (for fixed r, n) resp. n (for fixed r, R) is sufficiently large.
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We were not able to characterize explicitly all »,r, R for which ¢, is
optimal. However, in the next section, a necessary condition for the
optimality of g, is derived.

Remark 4. For the simplest case n=1, the sum in (45) does not occur.
It is easily verified that R > r guarantees g¥ >0, /=1, 2, and thus we have
reobtained the result of Opfer and Schober [6] for the case n=1.

Remark 5. 1t follows from Meinardus’ invariance thecrem [5,
Theorem 277 that the extremal polynomials of (1) corresponding to ¢ and
its reflections ¢ resp. —¢ on the real resp. imaginary axis are connected
through

pozir, é)=p, (i r. ¢) resp.  plzr, —c)=p(—zrc¢), zeC.
This symmetry is also reflected in the following relations for the numbers
(45). For fixed n and r, we consider ¢ =0o*(c¢) as a function of ¢. Then,

aX(c)y=0a% ) [=0,1,.. 2n,
and

_ ax (c), [=0,1,...n
o (—e)=1
a¥, _.(c), I=n+1, ., 2n,
where of :=o0%,. These identities can be verified by a routine calculation
using the definition of ¢*.

4. OPTIMAL POLYNOMIALS FOR THE CONSTRAINED CHEBYSHEV PROBLEM

In this section, we present a simple inequality involving n, r, R which
guarantees the optimality of ¢, for (1). For that purpose, a lower bound for
the numbers (45) is derived which finally leads to a necessary condition for
the nonnegativity of o, /=1, 2, ..., 2n.

Throughout this section, it is assumed that'n>2, R>r>1, and that
c € 06y 1s represented in the form (6). Moreover, we recall the definitions
of a,, b, (in (8)), A, B, (in (11)), d, (in (16)), and f,. g.(in (40)). In the
following lemma, some estimates, which will be used in the sequel, for these
numbers are listed.

LEMMA 2. (a) Fork=1,2,..n—1,

B,(1—d?) B,(1—d})
}fleAkﬁ9 'gk'gAn k As;__a;’; .
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n—1 1 ] 4}’5 R n
b —t— A, < =
(b) k2|<ak+bk> k<(r4—l)(R—r)<r>’
LA | 1 44
— - A ) ____—___Ru
k21<ak+bk> TSP R— )

n—1 2 \
n—k hn k 2r(2r_+1) R "
A<——2 00 (2
g <akbn ko Gn Abk> A<("2'1)(R—f’)<’> 40)

Proof. (a) By Cauchy’s inequality, it follows from (40) that

1 <led e, gl <le, W Jelx)

where

B+ x _cos’(ny)  sin’(ny)
ATB, A4, B,

g(x):= x :=sin’(ny).

From (10), we obtain |c,| < A, k=1, 2, .., and hence it remains to show
that

M A, —a,
By (16),
h-

1-di=1 —Ex::f(x).

n

Using standard calculus, one verifies

V &(x) \/
> 0<x<l,
flx) ~ fa A; a,,
and thus (47) holds true.
(b) First, we recall that

n—1 n__
y x’fz”;_lx, x# 1. (48)
k=1 <

Moreover, for k=1,2, ..., one has 4, < R*, a, + b, =r*, and

Together with (48) (for x = R/r), we obtain
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LR ] ] -1 R k r4k 4?‘5 ia n
— 4 — 14, <4 — -
k§1<ak+bk) K= k§1<r) r‘“‘-—l<(r4—l)(R-r)(r>
Similarly, (49) and (50) (with x= 1/(Rr)) lead to

71 1 1 R | 1 i,,,41: 41"4
—+— 1A, <4R" Y < R™.
f\-gl (ak+bk) ok ktl (rR)k rak* I ("'4—1)(["?‘“1)

We prove (46) by verifying that

— 1 F 2 #
g 7 2rir-+ 1) (R)

< —
k§1 akbn—k g (r~__l)(R,_r)

n—1 3 H
b, . 2 R

A, — .
L "<(r2_~1)(R«r><r>

The first of these inequalities follows from

r s
and

rt a, , 1" “+1<r2+1 bl ne1
2 b, PRSP B

Ak<Rk, a, >

and (48) (with x= R/r). The second one is obtained by making use of

b, . 1 22
<Rf, Il <, k=11,
e P N G "

and again (48) (with x = R/r). This concludes the proof of the lemma. |

Next, we turn to the derivation of a lower bound for the numbers ¢,
{=1, ..., 2n. Using the fact that, by (16),

cos(ny)] / 1 —sin*(ny)
V1-d2 N

) S ls
1 —sin*(ny)b2/B?

and part (a) of Lemma 2, one obtains from (45) and (43) the inequalities

oF 1=, T (201 ()

n k=1

a 202 /4, a '7B, "t 1 1
Y [t S el . s A,
An bi+d.v2:<an A?}‘) (A z (ank_*_bnvk) g

k=1

de""<1 l) aB{dI"”(a,k :’)_k> ‘)
+ —+ A, " ot el D PR
A,b, ;(g; a, by “ A,b, ,E, apb, i« a,_ by k

I=1,..,2n (50)
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We set y:=(r/R)". With (8) and (11), one easily verifies that

hn (l”

<y, — < 2y,
BII A 2

and, together with (18), the estimates

BII BH (l;; < 2’,“ (1” B}l Idn‘ <

< . »
4" a4 "R Ab,

n n'n

2y (51)

follow. Furthermore, from now on it is assumed that y < 1/2, and then

A, a,\ ' 2y
-] < 52
<a A > 1 —4y- (>2)

" "

is guaranteed. By using (51), (52), and the inequalities stated in
Lemma 2(b), we finally deduce from (50) the lower bound

1 83
1 —4p? (r* = 1)(R—7)
><<1+(2r“+1)(r“+1) 2AR-r)y

' o, =12, ..,2n
P 'l+r(Rr41}‘l> "

a¥>1-2y

In view of Theorem 3 and Theorem 1, this estimate leads to part (a) of the
following
THEOREM 4. Let n>=2, ce &y, and R>r> 1. Then:

(a) q,lz; ¢)is the optimal polynomial for (1) with corresponding minimal
norm

’.H+ 1,”"”
D,(r, ¢) =,
n(’ () R“‘\L],'/R”
if
r n
r=y(r, Ryon)i=( =
y=xr,R n) <R>
is such that y < 1/2 and
y 8>
=2y (1+2y) >
( ) (1 +2y) P~ 1(R—1)
2ri+ O +1) 2(R—r)
1 ) ?
(1 B ) s

holds.
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(b) There exists a number Ry(n, r) such that g,(z; c) is the extremal
polynomial of (1) for all

c €06y with R>= Rgy(n, r).

(¢} Let cedé&y be such that

(54)

Then, there exists an integer ny(r, R} such that ¢,(z;c) is the extremal
polynomial of (1) for all nzny(r, R).

Proof. Only parts (b) and (c) remain to be proved. For fixed r and n,
v(r, R, n) > 0if R— o, and (53) is clearly satisfied if R is sufficiently large.
Similarly, if r and R are fixed, the condition (54) guarantees that (53) is
true if n is large enough. This concludes the proof of Theorem 4. |

Remark 6. 1t follows from R>r> 1 that

@+ 1P +1) 2AR—r) , 09
1+ : <l 2yt <= (1 42y
a '1+r(Rr—1)'1 +6r+2y <4(1+2})

for all 0< v < 1/2. Thus (53) is true if » < 1/2 satisfies the stronger condi-
tion
18r°

P
=2 > ey

(55)

Using (55), one easily obtains explicit formulas for numbers R,(n, r) with
the property stated in Theorem 4(b); e.g., set

734 — 1

Ro(n, r) =r —}‘4———1_

(56)

Then, for all R= R(n, r)

<1_2<L>">2>l>__&5__
R 47 P D(R=r)

and, in particular, (r/R)"<1/2. Hence, R,(n,r) 1is suitable for
Theorem 4(b).

Remark 7. Let %(r) denote the set of all points ¢ceC\ & for which



314 FISCHER AND FREUND

q,.(z;c) is the optimal polynomial for (1). By Theorem 4(b), %,(r) is an
unbounded set. More precisely, we proved that
1/ I
ce4(r) forall ceC with |c|>= (R(,+—),
2 R,
where R,= Ry(n, r) is given by (56). The boundary of ¥,(r) is a closed
Jordan curve which, in view of Theorem 3, is composed of pieces of ¢4, and
of pieces of the curves

aX(c)y=0, =12, ..,2n

FIGURE 1
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We have computed these curves numerically for a number of cases. Some
typical pictures (for r=2, n=2, .., 5) are shown in Fig. la~-d. Because of
the symmetry with respect to the real and imaginary axis, we have only
plotted the first quadrant. 4(r) is the region exterior to these curves
including the parts of its boundary which are described by the curves
a¥(¢)=0. Note that near the real axis the boundary of %,(r) is given by
o8,
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